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This paper considers the skills needed for data representation. A framework of 

transnumerative techniques that facilitate data representation is proposed and applied to the

responses of 73 year 7 students to two tasks involving association. Students’ responses

were classified according to their levels of success in representing the association, and the

types of techniques used. It was found that while students had techniques for representing

data, their choices of graph type were not always suitable, and they overlooked simple

techniques such as ordering and grouping data that could have made their representations

clearer. Implications for doing and teaching data analysis are discussed.

Konold and Pollatsek (2002) describe data analysis as searching for signals in noisy 

processes. It can also be thought of as finding and revealing messages among data. In a 

data-drenched world statistical literacy—particularly the capacity to identify such signals 

or messages—is essential. Statistics is now recognised as a more important component of 

the mathematics curriculum than ever before (e.g., Board of Studies, 2000; National 

Council of Teachers of Mathematics, 2002). For data presented in the form of tables and

graphs the ability to read that data, and read between and beyond the data (Curcio, 1987) is 

vital, and these skills have been the focus of many studies. It is the process of 

representation rather than interpretation, however, which is the focus of the current study, 

particularly in order to convey messages that are within data. Evidence from at least one 

study (e.g., Chick & Watson, 2001) suggests that, for small data sets at least, students can 

interpret trends and facts about the data, but may have difficulty representing these clearly. 

It has also been suggested (e.g., Chick, 2000) that students may not appreciate that claims

about data ought to be accompanied by evidence in the form of a convincing 

representation.

That data representation can be difficult is known. Tufte’s seminal work (1983) gives

numerous examples of poorly designed graphs produced by professionals. Turning to 

students’ attempts at data representation, research with the open-ended Data Cards task of 

Watson and colleagues showed that bar graphs of frequency data (univariate data) are done 

well, but that making comparisons or representing relationships (multivariate data) is more 

difficult (e.g., Chick & Watson, 2001; Pfannkuch, Rubick, & Yoon, 2002; Watson & 

Callingham, 1997; Watson, Collis, Callingham, & Moritz, 1995). Nisbet’s studies (e.g., 

2001, 2003) suggest that categorical data are more readily represented than numerical, and 

that students do not often decide to group data. In considering older students’ attempts to 

represent data, Chick (2003) found that whereas none of the representations lied about the 

data, some were better at depicting messages than others, and she suggested that there is an 

art to choosing the most appropriate representational technique. 

The search for associations among variables is an important aspect of statistics, often 

delayed until late high school. Evidence suggests, however, that younger students can 

comprehend aspects of association and interpret data where an association exists; the 

representation of such associations, on the other hand, has been less extensively studied. 

Moritz (2000) asked primary schools students to graphically depict a verbally described 

association, finding that many could produce reasonable, if unconventional, 
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representations. He did not, however, supply students with actual data. Few of the primary

school students using the Data Cards data set, which allows students choice of what 

aspects to consider, chose or knew how to represent relationships between variables, with 

most concentrating on univariate analysis (see, e.g., Chick & Watson, 2001). In contrast, 

the able Year 7 and 8 students in the study of Pfannkuch, Rubick, and Yoon (2002) 

produced some multivariate representations—not always conventional—that allowed 

comparisons between groups and the identification of associations.

What is it, then, about representation that makes it difficult? Given a data set, it is clear 

that something must be done to it to produce a representation. Even merely re-presenting 

the raw data in a different format, such as a table, requires an understanding of that format.

Of course, better representations usually result from additional manipulation of the data 

that makes clearer the messages therein. Wild and Pfannkuch (1999) introduced the term

transnumeration for the process of “changing representations to engender understanding” 

(p. 227). Their description included three aspects: (i) capturing measures from the real 

world, (ii) reorganising and calculating with data, and (iii) communicating data through

some representation. The latter two are the focus here. Success with representation—

particularly when messages in the data are complex, such as with association—is clearly 

dependent on knowing what types of representation are useful and having a range of 

techniques for transforming data into forms conducive to such representations.

The purpose of the current study is two-fold. First, it will examine what skills are 

important in the early stages of data representation at the upper primary and secondary 

school levels, by investigating the applicability of a framework of transnumerative

techniques. Second, it will consider how effectively these techniques are used by young 

high school students in the specific case of representing association.

Framework

As a first attempt to identify the strategies that might be used to transnumerate data—

particularly for straightforward data sets encountered at school—a framework of 

transnumerative techniques is proposed. This framework, shown in Table 1, lists a number

of techniques that might be applied to data in order to find and display the message within. 

Each technique involves some “change in representation”, by creating a new variable,

organising the data differently, or representing them in a graphical way. The examples

used to illustrate the techniques in Table 1 are based on the data set used by participants in 

this study. The initial variables are the number of hours of exercise, the number of fast 

food meals consumed per week, and favourite activity. 

The techniques of graphing and tabulation, included in Table 1 as “graphing”, change

representations and thus are types of transnumeration. They are often final steps, to display 

the results of data analysis, but may also occur during data exploration. In most cases, 

however, other transnumerative steps precede graphing. These will involve the other 

techniques, and transform data into a form suitable for graphing. A frequency bar graph, 

for example, needs frequency data to determine the bar heights. For small data sets, some

of this transnumeration may take place concurrently with the graph production, as when 

tallying. For larger data sets, however, these transformations are done in advance of 

graphing. Once data are in a suitable form, the graph (or table) then can be produced 

without further transnumeration, apart from the transnumerative mechanics of recording 

the data in graphical form. This is essentially what Excel’s Chart Wizard does: the user 

specifies the data and representation type—and sometimes has to transform the data 
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beforehand—and the program carries out the final transnumeration that produces the 

graph.

Table 1 

Transnumerative Techniques 

Technique Key Description Example

Sorting SRT The data are sorted on some

criterion. No new variables arise. 

The data are sorted by hours of 

exercise, from lowest to highest. 

Grouping GRP The data are grouped according to

some criterion. This creates a new 

variable. This may involve the

change variable type 

transnumeration beforehand.

A new variable “level of 

consumption” is created using the 

fast food data, with values “low” 

(0-1 fast food meals/week),

“medium” (2-3 meals/week), and 

“high’ ( 4 fast food meals/week).

Subset

selection

SSS A subset of the data is selected for 

further transnumeration. 

Data associated with “low” and 

“high” levels of consumption are 

considered (“medium” is not).

Change

variable type 

CVT A numerical variable is thought of 

in categorical terms or a categorical

variable is thought of in numerical

or ordinal terms.

Favourite activity (a categorical 

variable) can be given ordinal status, 

by ordering activities from most to 

least active.

Frequency

calculation

FRQ The frequencies of occurrence of 

values of a categorical variable are 

determined. Creates new variable.

The numbers of people in each of the 

“level of consumption” categories 

are determined.

Proportion

calculation

PRP Proportions (e.g., fractions) are 

determined in relation to a whole.

This creates a new variable. 

The percentage of people in each of 

the activity categories is determined.

Graphing GRF Some or all of the variables in the 

data (in their current form) are 

graphed or tabulated.

A scatter graph of hours of exercise 

v number of fast food meals

consumed is constructed. 

Central

tendency

calculation

CEN A measure of central tendency

(e.g., mean) is determined for a 

variable. May create new variable. 

The average number of fast food 

meals consumed per week is 

determined.

Measure-of-

spread

calculation

MOS Some measure of the spread of 

values associated with a numerical 

variable is determined. May create 

new variable. 

The range of values associated with 

the number of hours of exercise is 

noted.

Other

calculation

OTH Generic term, recognising that other 

statistical calculations on the data 

are possible (e.g., sum, correlation

coefficients, etc.). 

A line of best fit is determined for 

the data from hours of exercise and 

number of fast food meals

consumed.

Method

The task. Participants in the study were given a table showing a data set (similar to the 

Data Cards used by Watson and colleagues, but with fewer variables). The data set listed

the names of 16 children, together with each child’s favourite activity, number of hours of 

exercise per week, and the weekly number of fast food meals consumed. The set was 

constructed so that there were associations between the two numerical variables (hours of 

exercise and number of fast food meals), and between the categorical variable (favourite 
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activity) and hours of exercise (a numerical variable). Two Questions, shown below, 

informed the participants of the possible existence of these associations and asked them to

produce a representation that would convince others of the relationship.

1. A group of people looked at this data set and said that they thought that people who 

ate lots of fast food didn’t seem to do much exercise. Can you draw a graph or 

something similar to show this?

2. They also said that they thought that people who had more active favourite 

activities did more exercise during the week. Can you use the data to draw a graph 

or something similar to demonstrate this so that you could convince your friends?

The task was also discussed with the participants, before they had about 40 minutes to 

work on the task. Graph paper marked with a 1cm grid was supplied, but the participants 

were also reminded that it was not necessary to draw a graph if they felt some alternative

representation showed the requested association. 

Participants. The participants were 73 Year 7 girls (ages 11-13) at a private school in a 

major Australian city. The study took place early in the school year, so students’ main

prior experience of data handling would have been in primary school. Such experience 

should have included work with bar and line graphs, tables, and time series data; grouping 

and ordering data; and computing simple statistics, including the mean.

Data analysis. Students’ responses to the two Questions were classified according to 

the extent to which the representations portrayed the indicated relationships. Five levels 

were identified. Level 0 responses did not deal with multivariate data; Level 1 responses

did not make association apparent, often reproducing the original data in an alternative

form; Level 2 responses made some effort to highlight values indicating association; 

Level 3 responses sorted or grouped data so that association was partially apparent; and 

Level 4 responses clearly depicted association. The transnumerative techniques used were 

also recorded. In reporting results the data have been compressed: a few representations

exhibited minor variations from the category in which they have been placed, such as the 

use of an extra technique. In this report, “student” refers to the participants in the study,

and “child” and “children” to the fictitious individuals in the data set.

Results

There were 133 responses to the Questions. Representations depicted one, two, or all 

three variables, and 85% were graphical. The Level 0 responses, which did not address the 

multivariate nature of the tasks, are reported first, followed by those responses that directly

addressed each of the two Questions by representing bivariate data. Finally, those 

representations that incorporated all three variables, and so could be used to address both 

Questions simultaneously, are discussed.

Representations Not Dealing With Bivariate Data

There were 15 responses that did not clearly address either of the Questions, classified 

as Level 0. Six of these were from three students, who claimed to be responding to each of 

the two Questions. One of these students wrote narrative responses discussing the effect of,

for example, fast food and exercise on weight, but without reference to the data and so no 

transnumerative techniques were used. The other two students, together with four others, 

graphed the values of the data for one of the variables (e.g., one student did a bar graph 

showing the consumption of each of the 16 children in the data set). The only 

transnumerative technique applied was graphing—a “literal translation” of the original 
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data—for a single variable. A further three graphs were frequency bar graphs of activity, 

requiring a frequency calculation before graphing. These only considered one of the 

variables and so association was not depicted. The final two representations each 

incorporated three graphs that were frequency bar graphs for each of the three variables.

To produce these for fast food consumption and hours of exercise, the students had to treat

the numerical values as categories (cf., Nisbet, 2001), prior to frequency calculation and 

graphing. The univariate nature of these representations prevents depiction of association. 

Association Between Two Numerical Variables

Of the remaining 118 representations, 47 involved only the two numerical variables— 

fast food consumption and hours of exercise—and were clearly responses to Question 1.

Table 2 indicates the types and frequency of occurrence of the more common responses.

Table 2 

Representations Depicting Association between Two Numerical Variables 

Level Description of representation (FF = fast food consumption

variable, Ex = hours of exercise variable) 

Techniques

used

Number

(n=47)1

1 Two aligned graphs: FF for each child, Ex for each child GRF 9

1 Single graph, two columns (FF and Ex) for each child GRF 10

1 Other paired FF with Ex for each child (e.g., graph of Ex 

values with corresponding FF listed) 

GRF 8

2 Paired FF and Ex, but for only a subset or full set with a subset 

highlighted (e.g., high FF values listed, with corresponding Ex 

graphed above)

GRP, SSS, 

GRF

4

3 Listed FF high to low, listed Ex low to high, and noted

occurrence of people at top of both lists 

SRT, GRF 1

4 Data grouped by categories in one variable, other variable 

listed/graphed (e.g., 5 graphs, one per FF category, showing Ex

for children in that category)

CVT, GRP, 

GRF

3

4 Average Ex calculated for each FF category, and graphed CVT, GRP, 

CEN, GRF 

1

4 Scatter graph (or equivalent) of Ex v FF or FF v Ex GRF (GRP) 6

1 Not all representations are described, but all successful ones (Levels 3 and 4) are included.

Over half of these representations were literal re-depictions of the original raw data, 

with no other transnumeration apart from that required to place the data into the chosen 

graphical form. These representations, classified as Level 1 in Table 2, show the

association no better than the original data. The reader can skim the representation to look

for high occurrences of one variable with low occurrences of the other, but the comparison

has to be made for each individual, just as would be done if examining the original data 

set. Four students highlighted some subset of the data to show high values of fast food 

consumption with low hours of exercise, for example, but did not contrast this with low

fast food consumption. This made the association partially apparent, but not fully so (Level 

2).

There were 11 successful or nearly successful representations. Most of the nearly 

successful representations undertook some sorting or grouping of the data (Level 3), so that 

the association is apparent provided the viewer can interpret the representation

appropriately. Finally, the successful representations took advantage of some more
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advanced techniques. Scatter graphs, produced by six students, depict association without 

requiring any more transnumeration than merely graphing the data. No data reorganisation 

is required; the secret is to know and use this graph type. Only one student appreciated the 

power of calculating averages for comparing groups (cf. Watson & Moritz, 1999), and 

used a graph of the average hours of exercise for each category of fast food consumption.

This required the fast food consumption variable to be regarded as categorical, and the data 

to be grouped into these categories, before the mean was calculated and graphed. 

Association between categorical and numerical variables

A total of 49 representations were clearly responses to Question 2, involving hours of 

exercise and favourite activity. Table 3 describes common responses. 

Table 3 

Representations Depicting Association between Categorical and Numerical Variables 

Level Description of representation (Act = favourite activity

variable, Ex = hours of exercise variable) 

Techniques used Number

(n=49)1

1 Paired data duplication (cf. Table 2, Level 1) (e.g., Ex 

graphed, Act listed; twin columns Ex and Act with Act

given diff. heights for diff. categories)

GRF 19

2 Subset of data considered (e.g., Ex graphed for sport 

subgroup); not enough data for association

GRP, SSS, GRF 4

2 Totals of Ex graphed for each category of Ex GRP, OTH, GRF 4

3 Scatter graph: Act categories indicated by position on

axis but not ordered by degree of activity 

GRF 7

4 Ex values graphed for each category of Act (or enough 

categories to convince about association) 

GRP, GRF (SSS) 6

4 Average Ex computed for each Act category GRP, CEN, GRF 4

1 Not all representations are described, but all successful ones (Levels 3 and 4) are included.

As with the responses to Question 2 a large proportion of representations (about 40%) 

duplicated the data in an unsorted paired fashion, so that the association is only apparent by 

doing a value-by-value manual analysis of the representation (Level 1). Four responses 

presented representations of a subset of the data, such as the hours of exercise of those 

whose favourite activity is sport. Although allowing a focus on the most active group, they 

failed to show that the hours of exercise are higher than any of the other activity groups 

because these were not depicted. A further four students produced totals of the number of 

hours of exercise for each activity category, failing to take into account the different

numbers of data values contributing to these (Level 2). The scatter graphs that were 

presented used positions on one of the axes to represent the activity categories, but because

these were not ordered by degree of activity the graph was not successful at revealing the 

association clearly (Level 3). The Level 4 responses either involved average hours of 

exercise for each activity category, or presented graphs of hours for exercise for each

activity group, with differences among the graphs revealing the association.

Representations Involving All Three Variables

There were 22 representations that incorporated all three variables, and for ten of the

students this was their only representation. Eleven responses were Level 1 representations 
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that duplicated the values of the three variables, by producing a dual column graph (or 

aligned pairs of graphs) for the numerical variables, and writing or position-graphing the

corresponding activity categories alongside, with no sorting or grouping of the data. Two 

students totalled the numerical variables for each activity category, with one then 

undertaking additional but unnecessary transnumeration by producing pie charts for these 

subtotals as proportions of the overall totals (Level 2). Three students listed all values of 

the data, but sorted by fast food consumption, so that trends in the other variables could be 

seen as a consequence, whereas another student grouped by activity category and listed the 

other variables (Level 3-4). 

Discussion and Conclusion 

Space constraints prevent a consideration of all the representations produced, however 

the framework contains all the strategies used by students. This suggests that for this type 

of statistical task at least—and for more straightforward representation tasks—the

framework adequately identifies the transnumerative techniques useful for and likely to be 

used when representing data. Furthermore, the results indicate that many Year 7 students

are able to produce representations of multivariate data, although the levels of success in

depicting association vary widely. 

Most students produced graphs rather than tables. This was understandable, given the 

wording of the Questions and the supply of graph paper to students. For about half the 

representations that addressed two or more variables, however, the representation— 

whether table or graph—reproduced the original data, showing no transnumeration but for

the process of turning data into the chosen representational form. This prevented a clear

depiction of association, with one exception: scatter graphs. The representational power 

and simplicity of a scatter graph lies in the fact that although it involves no 

transnumeration apart from graphing, the resulting graph does demonstrate association. 

This technique could be given greater and earlier emphasis in school data analysis work. 

The results also suggest that simple techniques, such as grouping and sorting, are powerful 

yet under-utilised. Students who sorted the data before listing it, for example, produced

representations where the association was visible without great reader effort. These

strategies could receive more explicit emphasis in teaching, and, in fact, the repertoire of 

techniques in the framework could be made available to students as an explicit list. 

Some students whose representations did not clearly show the association still 

recognised its existence and could talk about how it might be seen in their depiction, for 

example, by seeing if one column is high when the corresponding column for the second 

variable is low. These students would benefit from seeing some effective representations,

so that they can see how data analysis and reporting is enhanced by the use of other 

transnumerative techniques that produce better representations.

Finally, there is scope for much further research. Two particular areas of interest

include the responses from other age groups (e.g., what happens when students have 

greater familiarity with sophisticated techniques?), and the outcomes when spreadsheet 

programs are used. 
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